Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Acta Pharm Sin B ; 14(4): 1661-1676, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572101

RESUMO

Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by changes in kidney structure and function. The natural product rosmarinic acid (RA) has demonstrated therapeutic effects, including anti-inflammation and anti-oxidative-stress, in renal damage or dysfunction. In this study, we characterized the heterogeneity of the cellular response in kidneys to DN-induced injury and RA treatment at single cell levels. Our results demonstrated that RA significantly alleviated renal tubular epithelial injury, particularly in the proximal tubular S1 segment and on glomerular epithelial cells known as podocytes, while attenuating the inflammatory response of macrophages, oxidative stress, and cytotoxicity of natural killer cells. These findings provide a comprehensive understanding of the mechanisms by which RA alleviates kidney damage, oxidative stress, and inflammation, offering valuable guidance for the clinical application of RA in the treatment of DN.

2.
J Hazard Mater ; 471: 134256, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38640673

RESUMO

A new method for the determination of 26 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in marine sediment pore water was developed using online solid phase extraction coupled with liquid chromatography-tandem mass spectrometry. The proposed method requires only about 1 mL of pore water samples. Satisfactory recoveries of most target PFASs (83.55-125.30 %) were achieved, with good precision (RSD of 1.09-16.53 %), linearity (R2 ≥ 0.990), and sensitivity (MDLs: 0.05 ng/L-5.00 ng/L for most PFASs). Subsequently, the method was applied to determine PFASs in the sediment pore water of five mariculture bays in the Bohai and Yellow Seas of China for the first time. Fifteen PFASs were detected with total concentrations ranging from 150.23 ng/L to 1838.48 ng/L (mean = 636.80 ng/L). The ∑PFASs and PFOA concentrations in sediment pore water were remarkably higher than those in surface seawater (tens of ng/L), indicating that the potential toxic effect of PFASs on benthic organisms may be underestimated. PFPeA was mainly distributed in pore water, and the partition of PFHpA (50.99 %) and PFOA (49.01 %) was almost equal in the solid and liquid phases. The proportions of all other PFASs partitioned in marine sediments were significantly higher than those in pore water.

3.
Neural Netw ; 175: 106319, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38640698

RESUMO

To enhance deep learning-based automated interictal epileptiform discharge (IED) detection, this study proposes a multimodal method, vEpiNet, that leverages video and electroencephalogram (EEG) data. Datasets comprise 24 931 IED (from 484 patients) and 166 094 non-IED 4-second video-EEG segments. The video data is processed by the proposed patient detection method, with frame difference and Simple Keypoints (SKPS) capturing patients' movements. EEG data is processed with EfficientNetV2. The video and EEG features are fused via a multilayer perceptron. We developed a comparative model, termed nEpiNet, to test the effectiveness of the video feature in vEpiNet. The 10-fold cross-validation was used for testing. The 10-fold cross-validation showed high areas under the receiver operating characteristic curve (AUROC) in both models, with a slightly superior AUROC (0.9902) in vEpiNet compared to nEpiNet (0.9878). Moreover, to test the model performance in real-world scenarios, we set a prospective test dataset, containing 215 h of raw video-EEG data from 50 patients. The result shows that the vEpiNet achieves an area under the precision-recall curve (AUPRC) of 0.8623, surpassing nEpiNet's 0.8316. Incorporating video data raises precision from 70% (95% CI, 69.8%-70.2%) to 76.6% (95% CI, 74.9%-78.2%) at 80% sensitivity and reduces false positives by nearly a third, with vEpiNet processing one-hour video-EEG data in 5.7 min on average. Our findings indicate that video data can significantly improve the performance and precision of IED detection, especially in prospective real clinic testing. It suggests that vEpiNet is a clinically viable and effective tool for IED analysis in real-world applications.

4.
Pharmacol Res ; 203: 107174, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580185

RESUMO

The emergence of immune checkpoint inhibitors (ICIs) has revolutionized the clinical treatment for tumor. However, the low response rate of ICIs remains the major obstacle for curing patients and effective approaches for patients with primary or secondary resistance to ICIs remain lacking. In this study, immune stimulating agent unmethylated CG-enriched (CpG) oligodeoxynucleotide (ODN) was locally injected into the tumor to trigger a robust immune response to eradicate cancer cells, while anti-CD25 antibody was applied to remove immunosuppressive regulatory T cells, which further enhanced the host immune activity to attack tumor systematically. The combination of CpG and anti-CD25 antibody obtained notable regression in mouse melanoma model. Furthermore, rechallenge of tumor cells in the xenograft model has resulted in smaller tumor volume, which demonstrated that the combinational treatment enhanced the activity of memory T cells. Remarkably, this combinational therapy presented significant efficacy on multiple types of tumors as well and was able to prevent relapse of tumor partially. Taken together, our combinational immunotherapy provides a new avenue to enhance the clinical outcomes of patients who are insensitive or resistant to ICIs treatments.

5.
Sci Total Environ ; 926: 171599, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38490410

RESUMO

Estuarine-offshore sediments accumulate substantial particulate organic matter, containing organic sulfur as a key component. However, the distribution and sources of organic sulfur in such environments remain poorly understood. This study investigated organic sulfur in the Yangtze River Estuary and adjacent East China Sea. Dissolved organic sulfur varied from 0.65 to 1.99 µmol/L (molar S:C 0.006-0.018), while particulate organic sulfur ranged from 0.42 to 2.69 µmol/L (molar S:C 0.007-0.082). Sedimentary organic sulfur exhibited a similar molar S:C ratio (0.014-0.071) to particulate organic sulfur in bottom water, implying that particulate matter deposition is a potential source. Furthermore, sediments exposed to frequent hypoxia harbored significantly higher organic sulfur and S:C values compared to non-hypoxic areas. Laboratory incubation experiments revealed the underlying mechanism: sustained activity of sulfate-reducing bacteria in hypoxic sediments led to a substantial increase in sedimentary organic sulfur (from 15 to 53 µmol/g) within 600 days. This microbially driven sulfurization rendered over 90 % of the organic sulfur resistant to acid hydrolysis. Therefore, this study demonstrates that, alongside particle deposition, microbial sulfurization significantly contributes to organic sulfur enrichment and likely promotes organic matter preservation in estuarine-offshore sediments, particularly under hypoxic conditions. This finding advances our understanding of organic sulfur sources in these vital ecosystems.


Assuntos
Ecossistema , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Enxofre , Estuários , Material Particulado , China , Sedimentos Geológicos
6.
Mol Pain ; 20: 17448069241242982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38485252

RESUMO

Itch is a somatosensory sensation to remove potential harmful stimulation with a scratching desire, which could be divided into mechanical and chemical itch according to diverse stimuli, such as wool fiber and insect biting. It has been reported that neuropeptide Y (NPY) neurons, a population of spinal inhibitory interneurons, could gate the transmission of mechanical itch, with no effect on chemical itch. In our study, we verified that chemogenetic activation of NPY neurons could inhibit the mechanical itch as well as the chemical itch, which also attenuated the alloknesis phenomenon in the chronic dry skin model. Afterwards, intrathecal administration of NPY1R agonist, [Leu31, Pro34]-NPY (LP-NPY), showed the similar inhibition effect on mechanical itch, chemical itch and alloknesis as chemo-activation of NPY neurons. Whereas, intrathecal administration of NPY1R antagonist BIBO 3304 enhanced mechanical itch and reversed the alloknesis phenomenon inhibited by LP-NPY treatment. Moreover, selectively knocking down NPY1R by intrathecal injection of Npy1r siRNA enhanced mechanical and chemical itch behavior as well. These results indicate that NPY neurons in spinal cord regulate mechanical and chemical itch, and alloknesis in dry skin model through NPY1 receptors.


Assuntos
Neuropeptídeo Y , Receptores de Neuropeptídeo Y , Animais , Prurido/induzido quimicamente , Transdução de Sinais , Medula Espinal
7.
Mar Pollut Bull ; 201: 116250, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479322

RESUMO

Lipophilic phycotoxins (LPTs) and domoic acid (DA) in Antarctic seawater, as well as parts of the South Pacific and the Southern Indian Oceans were systematically investigated. DA and six LPTs, namely pectenotoxin-2 (PTX2), okadaic acid (OA), yessotoxin (YTX), homo-yessotoxin (h-YTX), 13-desmethyl spirolide C (SPX1), and gymnodimine (GYM), were detected. PTX2, as the dominant LPTs, was widely distributed in seawater surrounding Antarctica, whereas OA, YTX, and h-YTX were irregularly distributed across the region. The total concentration of LPTs in surface seawater ranged from 0.10 to 13.57 ng/L (mean = 2.20 ng/L). ∑LPT levels were relatively higher in the eastern sea areas of Antarctica than in the western sea areas. PTX2 was the main LPT in the vertical profiles, and the PTX2 concentration was significantly higher in the epipelagic zone than water depths below 200 m. The predominant sources of PTX2 and OA in Antarctic sea areas are likely to be Dinophysis.


Assuntos
Toxinas Marinhas , Venenos de Moluscos , Oxocinas , Regiões Antárticas , Ácido Okadáico/análise , Oceano Índico
8.
Adv Biol (Weinh) ; 8(3): e2300542, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38408269

RESUMO

Sepsis is a life-threatening syndrome leading to hemodynamic instability and potential organ dysfunction. Oridonin, commonly used in Traditional Chinese Medicine (TCM), exhibits significant anti-inflammation activity. To explore the protective mechanisms of oridonin against the pathophysiological changes, the authors conducted single-cell transcriptome (scRNA-seq) analysis on septic liver models induced by cecal ligation and puncture (CLP). They obtained a total of 63,486 cells, distributed across 11 major cell clusters, and concentrated their analysis on four specific clusters (hepatocytes/Heps, macrophages, endothelial/Endos and T/NK) based on their changes in proportion during sepsis and under oridonin treatment. Firstly, biological changes in Hep, which are related to metabolic dysregulation and pro-inflammatory signaling, are observed during sepsis. Secondly, they uncovered the dynamic profiles of macrophage's phenotype, indicating that a substantial number of macrophages exhibited a M1-skewed phenotype associated with pro-inflammatory characteristics in septic model. Thirdly, they detected an upregulation of both inflammatory cytokines and transcriptomic factor Nfkb1 expression within Endo, along with slight capillarization during sepsis. Moreover, excessive accumulation of cytotoxic NK led to an immune imbalance. Though, oridonin ameliorated inflammatory-related responses and improved the liver dysfunction in septic mice. This study provides fundamental evidence of the protective effects of oridonin against sepsis-induced cytokine storm.


Assuntos
Citocinas , Diterpenos do Tipo Caurano , Sepse , Camundongos , Animais , Citocinas/genética , Citocinas/farmacologia , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/genética , Fígado , Perfilação da Expressão Gênica
9.
Front Endocrinol (Lausanne) ; 15: 1334609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390199

RESUMO

Background: Diabetic kidney disease (DKD) has become the leading cause of kidney failure, causing a significant socioeconomic burden worldwide. The usual care for DKD fails to achieve satisfactory effects in delaying the persistent loss of renal function. A Chinese herbal medicine, Tangshen Qushi Formula (TQF), showed preliminary clinical benefits with a sound safety profile for people with stage 2-4 DKD. We present the protocol of an ongoing clinical trial investigating the feasibility, efficacy, and safety of TQF compared to placebo in delaying the progressive decline of renal function for people with stage 2-4 DKD. Methods: A mixed methods research design will be used in this study. A randomized, double-blind, placebo-controlled pilot trial will evaluate the feasibility, efficacy, and safety of TQF compared to placebo on kidney function for people with stage 2-4 DKD. An embedded semi-structured interview will explore the acceptability of TQF granules and trial procedures from the participant's perspective. Sixty eligible participants with stage 2-4 DKD will be randomly allocated to the treatment group (TQF plus usual care) or the control group (TQF placebo plus usual care) at a 1:1 ratio for 48-week treatment and 12-week follow-up. Participants will be assessed every 12 weeks. The feasibility will be assessed as the primary outcome. The changes in the estimated glomerular filtration rate, urinary protein/albumin, renal function, glycemic and lipid markers, renal composite endpoint events, and dampness syndrome of Chinese medicine will be assessed as the efficacy outcomes. Safety outcomes such as liver function, serum potassium, and adverse events will also be evaluated. The data and safety monitoring board will be responsible for the participants' benefits, the data's credibility, and the results' validity. The intent-to-treat and per-protocol analysis will be performed as the primary statistical strategy. Discussion: Conducting a rigorously designed pilot trial will be a significant step toward establishing the feasibility and acceptability of TQF and trial design. The study will also provide critical information for future full-scale trial design to further generate new evidence supporting clinical practice for people with stage 2-4 DKD. Trial registration number: https://www.chictr.org.cn/, identifier ChiCTR2200062786.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Projetos Piloto , Resultado do Tratamento , Rim , Ensaios Clínicos Controlados Aleatórios como Assunto
10.
Environ Int ; 184: 108469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324928

RESUMO

Biochar promotes microbial metabolic activities and reduces N2O on aerobic composting. However, the effects of magnetic biochar (MBC) on the microbial succession and N2O emissions during pig manure composting remain unclear. Herein, a 42-day composting experiment was conducted with five treatment regimes: pig manure without biochar (CK), 5 % pig manure-based biochar (5 % PBC), 2 % MBC (2 % MBC), 5 % MBC (5 % MBC) and 7.5 % MBC (7.5 % MBC)), to clarify the variation in functional microorganisms and genes associated with nitrogen and direct interspecies electron transfer via metagenomics. Fourier-transform infrared spectroscopy showed that MBC possessed more stable aromatic structures than pig manure-based biochar (PBC), indicating its greater potential for nitrous oxide reduction. MBC treatments were more effective in composting organic matter and improving the carbon/nitrogen ratio than PBC. The microbial composition during composting varied significantly, with the dominant phyla shifting from Firmicutes to Proteobacteria, Actinobacteria, and Bacteroidota. Network and hierarchical clustering analyses showed that the MBC treatment enhanced the interactions of dominant microbes (Proteobacteria and Bacteroidota) and accelerated the composting process. The biochar addition accelerated assimilatory nitrate reduction and slowed dissimilatory nitrate reduction and denitrification. The Mantel test demonstrated that magnetic biochar potentially helped regulate composting nutrients and affected functional nitrogen genes. These findings shed light on the role of MBC in mitigating greenhouse gas emissions during aerobic composting.


Assuntos
Compostagem , Esterco , Animais , Suínos , Esterco/microbiologia , Nitratos , Solo , Carvão Vegetal/metabolismo , Nitrogênio/análise , Fenômenos Magnéticos
11.
Syst Rev ; 13(1): 23, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217017

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) is a common and severe complication of diabetes that can lead to end-stage renal disease with no cure. The first-line drugs recommended by clinical guidelines fail to achieve satisfactory effects for people with DKD. A Chinese herbal medicine Tangshen Qushi Formula (TQF) shows preliminary efficacy and safety in preserving renal function for people with DKD, but the effects on comprehensive renal outcomes remain unclear. We will conduct a systematic review and meta-analysis to evaluate the effects of TQF herbs and their compounds identified from ultra-high performance liquid chromatography-MS/MS in diabetic animal models with renal outcomes. METHODS: This protocol complies with the guideline Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols. We will include studies investigating the effects of TQF herbs and compounds on diabetic rats or mice with renal outcomes. Six electronic databases will be searched from their inception to February 2023. Quality assessment will be conducted using SYRCLE's risk of bias tool. Standardized or weighted mean differences will be estimated for renal outcomes (creatinine, urea, proteinuria, histological changes, oxidative stress, inflammation, and kidney fibrosis). Data will be pooled using random-effects models. Heterogeneity across studies will be expressed as I2. Sensitivity analyses will explore treatment effects in adjusted models and within subgroups. Funnel plots and Egger's test will be used to explore publication bias. DISCUSSION: The results of this review will provide valuable insights into the potential effects of TQF in managing DKD. The limitation is that the included studies will be animal studies from specific databases, and the interpretation of the findings must be cautious. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42023432895. Registered on 19 July 2023 ( https://www.crd.york.ac.uk/PROSPERO/#recordDetails ).


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Plantas Medicinais , Animais , Humanos , Camundongos , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Rim , Metanálise como Assunto , Revisões Sistemáticas como Assunto/métodos , Espectrometria de Massas em Tandem
12.
Cancer Lett ; 587: 216621, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38242198

RESUMO

Hepatocellular carcinoma (HCC) is among the deadliest malignancies worldwide and still a pressing clinical problem. Icaritin, a natural compound obtained from the Epimedium genus plant, has garnered significant attention as a potential therapeutic drug for HCC therapies. Mitophagy plays a crucial role in mitochondrial quality control through efficiently eliminating damaged mitochondria. However, the specific mechanisms of the interplay between mitophagy and apoptosis in HCC is still unclear. We aimed to explore the cross-talk between icaritin-induced mitophagy and apoptosis in HCC cells and investigate its potential mechanisms. Firstly, we confirmed that icaritin inhibits proliferation and migration while inducing mitochondrial damage and reactive oxygen species (ROS) production in HCC cells. Secondly, based on proteomics analysis, we discovered that icaritin inhibits the growth of tumor cells and disrupts their mitochondrial homeostasis through the regulation of both mitophagy and apoptosis. Thirdly, icaritin causes mitophagy mediated by PINK1-Parkin signaling via regulating feedforward loop. Furthermore, knockdown of PINK1/Parkin leads to inhibition of mitophagy, which promotes cell death induced by icaritin in HCC cells. Finally, autophagy/mitophagy inhibitors remarkably enhance icaritin-induced cell death and anticancer efficacy. Collectively, our findings reveal that icaritin suppresses growth, proliferation and migration of HCC cell through induction of mitophagy and apoptosis, while inhibition of mitophagy significantly increased the anti-cancer and pro-apoptotic effects of icaritin, indicating that targeting autophagy or mitophagy is a novel approach to overcome drug resistance and enhance anticancer therapies.


Assuntos
Carcinoma Hepatocelular , Flavonoides , Neoplasias Hepáticas , Humanos , Mitofagia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/patologia , Autofagia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Sci Rep ; 14(1): 1819, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245634

RESUMO

It is difficult to predict the surgical effect and outcome of severe traumatic brain injury (TBI) before surgery. This study aims to approve an evaluation method of computed tomography angiography (CTA) to predict the effect of surgery and outcome in severe TBI. Between January 2010 and January 2020, we retrospectively reviewed 358 severe TBI patients who underwent CTA at admission and reexamination. CTA data were evaluated for the presence of cerebrovascular changes, including cerebrovascular shift (CS), cerebral vasospasm (CVS), large artery occlusion (LAO), and deep venous system occlusion (DVSO). Medical records were reviewed for baseline clinical characteristics and the relationship between CTA changes and outcomes. Cerebrovascular changes were identified in 247 (69.0%) of 358 severe TBI patients; only 25 (10.12%) of them had poor outcomes, and 162 (65.6%) patients had a good recovery. Eighty-three (23.18%) patients were diagnosed with CVS, 10 (12.05%) had a good outcome, 57 (68.67%) had severe disability and 16 (19.28%) had a poor outcome. There were twenty-six (7.3%) patients who had LAO and thirty-one (8.7%) patients who had DVSO; no patients had good recovery regardless of whether they had the operation or not. Cerebrovascular injuries and changes are frequent after severe TBI and correlate closely with prognosis. CTA is an important tool in evaluating the severity, predicting the operation effect and prognosis, and guiding therapy for severe TBI. Well-designed, multicenter, randomized controlled trials are needed to evaluate the value of CTA for severe TBI in the future.


Assuntos
Lesões Encefálicas Traumáticas , Angiografia por Tomografia Computadorizada , Humanos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/cirurgia , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
14.
Sci Total Environ ; 917: 169861, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38185161

RESUMO

Perfluorooctanoic acid (PFOA) is a man-made chemical broadly distributed in various ecological environment and human bodies, which poses potential health risks. Its toxicity, especially the male reproduction toxicity has drawn increasing attention due to declining birth rates in recent years. However, how PFOA induces male reproductive toxicity remains unclear. Here, we characterize PFOA-induced cell injury and reveal the underlying mechanism in mouse Leydig cells, which are critical to spermatogenesis in the testes. We show that PFOA induces cell injury as evidenced by reduced cell viability, cell morphology changes and apoptosis induction. RNA-sequencing analysis reveals that PFOA-induced cell injury is correlated with compromised autophagy and activated endoplasmic reticulum (ER) stress, two conserved biological processes required for regulating cellular homeostasis. Mechanistic analysis shows that PFOA inhibits autophagosomes formation, and activation of autophagy rescues PFOA-induced apoptosis. Additionally, PFOA activates ER stress, and pharmacological inhibition of ER stress attenuates PFOA-induced cell injury. Taken together, these results demonstrate that PFOA induces cell injury through inhibition of autophagosomes formation and induction of ER stress in Leydig cells. Thus, our study sheds light on the cellular mechanisms of PFOA-induced Leydig cell injury, which may be suggestive to human male reproductive health risk assessment and prevention from PFOA exposure-induced reproductive toxicity.


Assuntos
Autofagossomos , Fluorocarbonos , Células Intersticiais do Testículo , Camundongos , Animais , Humanos , Masculino , Estresse do Retículo Endoplasmático , Caprilatos/toxicidade , Apoptose
15.
Heliyon ; 10(1): e23753, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226265

RESUMO

Acute intracranial hypertension (AIH) is a common and tricky symptom that inflicts upon patients after traumatic brain injury (TBI). A variety of clinical options have been applied for the management of AIH, such as physiotherapy, medication, surgery and combination therapy. Specifically, controlled decompression (CDC) alleviates the extent of brain injury and reduces the incidence of a series of post-TBI complications, thereby enhancing the prognosis of patients suffering from acute intracranial hypertension. The objective of the present project is to illuminate the potential molecular mechanism that underlies the neuroprotective effects of CDC in a rat model of traumatic epidural intracranial hypertension (TEIH). Herein, we observed the functional recovery, the degree of brain edema, the level of apoptosis, the expressions of neuronal cell autophagy-related signaling pathway proteins (including Akt, p-Akt, LC3 and Beclin-1) in rat TEIH model at 24 h post-surgery. The results showed in comparison with rapid decompression (RDC), CDC reduced the degree of brain edema, diminished the level of cellular apoptosis and enhanced neurological function, and whereas the neuroprotective effect of CDC could be reversed by rapamycin (Rap). The expressions of Beclin-1 and LC3 in CDC group were significantly lower than those of RDC group, and the expression levels of these two proteins were significantly elevated after the addition of Rap. The expression of p-Akt in CDC group was considerably enhanced than RDC group. After the addition of LY294002, a PI3K/Akt pathway inhibitor, p-Akt protein expression was reduced, and the neuroprotective effect of the rats was markedly inhibited. Taken together, our data demonstrate the superior neuroprotective effect of CDC with regard to alleviating early brain edema, improving the neurological status, suppressing apoptosis and inhibiting neuronal autophagy via triggering PI3K/Akt signaling pathway.

16.
Macromol Rapid Commun ; 45(1): e2300225, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37247852

RESUMO

Nonstoichiometric direct arylation polycondensation of 2,2',3,3',5,5',6,6'-octafluorobiphenyl with excess of 2,7-diiodo-9,9-dioctyl-9H-fluorene is demonstrated. Pd/Ag dual-catalyst system under water/2-methyltetrahydrofuran biphasic conditions enables direct arylation under mild conditions and promotes the intramolecular transfer of a Pd catalyst walking through the fluorene moiety. The nonstoichiometric direct arylation polycondensation under the optimized reaction conditions produces the corresponding π-conjugated polymer with a high molecular weight and terminal octafluorobiphenyl units at both ends.


Assuntos
Fluorenos , Polímeros , Catálise , Polimerização , Paládio/química , Hidrocarbonetos Fluorados/química
17.
Diabetes Obes Metab ; 26(2): 602-610, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37936340

RESUMO

AIM: To assess temporal trends of chronic kidney disease (CKD) attributable to type 2 diabetes (T2D) globally and in five sociodemographic index (SDI) regions. MATERIALS AND METHODS: We extracted the population data and CKD burden attributable to T2D from the Global Burden of Disease Study 2019. We evaluated the trends of disability-adjusted life years (DALYs), mortality, prevalence and incidence through age-period-cohort modelling, and calculated net drifts (overall annual percentage changes), local drifts (annual percentage changes in each age group), longitudinal age curves (fitted longitudinal age-specific rates), period relative risks (RRs) and cohort RRs. RESULTS: From 1990 to 2019, the global burden of CKD attributable to T2D showed increasing trends in general. The burden of CKD attributable to T2D was highest in the middle SDI region and lowest in the low SDI region. Age effects increased with age, and peaked at the ages of 75-79 and 80-84 years for incidence and prevalence, respectively. Period RRs in the burden of CKD attributable to T2D increased, with the high SDI being the most remarkable in DALYs and mortality, and the middle SDI being the most notable in incidence. Cohort RRs showed unfavourable trends in incidence and prevalence among recent cohorts. CONCLUSIONS: After a lengthy period of multi-initiative diabetes management, the high-middle SDI region exhibited improvement. However, unresolved issues and improvement gaps were still remarkable. Future efforts to reduce the burden of CKD attributable to T2D in the population should prioritize addressing the unfavourable patterns identified.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Humanos , Anos de Vida Ajustados por Qualidade de Vida , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Carga Global da Doença , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Estudos de Coortes
18.
Transl Stroke Res ; 15(1): 219-237, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-36631632

RESUMO

Subarachnoid hemorrhage (SAH) is a type of stroke with high morbidity and mortality. Netrin-1 (NTN-1) can alleviate early brain injury (EBI) following SAH by enhancing peroxisome proliferator-activated receptor gamma (PPARγ), which is an important transcriptional factor modulating lipid metabolism. Ferroptosis is a newly discovered type of cell death related to lipid metabolism. However, the specific function of ferroptosis in NTN-1-mediated neuroprotection following SAH is still unclear. This study aimed to evaluate the neuroprotective effects and the possible molecular basis of NTN-1 in SAH-induced EBI by modulating neuronal ferroptosis using the filament perforations model of SAH in mice and the hemin-stimulated neuron injury model in HT22 cells. NTN-1 or a vehicle was administered 2 h following SAH. We examined neuronal death, brain water content, neurological score, and mortality. NTN-1 treatment led to elevated survival probability, greater survival of neurons, and increased neurological score, indicating that NTN-1-inhibited ferroptosis ameliorated neuron death in vivo/in vitro in response to SAH. Furthermore, NTN-1 treatment enhanced the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4), which are essential regulators of ferroptosis in EBI after SAH. The findings show that NTN-1 improves neurological outcomes in mice and protects neurons from death caused by neuronal ferroptosis. Furthermore, the mechanism underlying NTN-1 neuroprotection is correlated with the inhibition of ferroptosis, attenuating cell death via the PPARγ/Nrf2/GPX4 pathway and coenzyme Q10-ferroptosis suppressor protein 1 (CoQ10-FSP1) pathway.


Assuntos
Lesões Encefálicas , Ferroptose , Hemorragia Subaracnóidea , Ratos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , PPAR gama , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/complicações , Netrina-1/farmacologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Transdução de Sinais
19.
CNS Neurosci Ther ; 30(3): e14471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37718708

RESUMO

AIMS: Understanding the neural mechanisms underlying stroke recovery is critical to determine effective interventions for stroke rehabilitation. This study aims to systematically explore how recovery mechanisms post-stroke differ between individuals with different levels of functional integrity of the ipsilesional corticomotor pathway and motor function. METHODS: Eighty-one stroke survivors and 15 age-matched healthy adults participated in this study. We used transcranial magnetic stimulation (TMS), electroencephalography (EEG), and concurrent TMS-EEG to investigate longitudinal neurophysiological changes post-stroke, and their relationship with behavioral changes. Subgroup analysis was performed based on the presence of paretic motor evoked potentials and motor function. RESULTS: Functional connectivity was increased dramatically in low-functioning individuals without elicitable motor evoked potentials (MEPs), which showed a positive effect on motor recovery. Functional connectivity was increased gradually in higher-functioning individuals without elicitable MEP during stroke recovery and influence from the contralesional hemisphere played a key role in motor recovery. In individuals with elicitable MEPs, negative correlations between interhemispheric functional connectivity and motor function suggest that the influence from the contralesional hemisphere may be detrimental to motor recovery. CONCLUSION: Our results demonstrate prominent clinical implications for individualized stroke rehabilitation based on both functional integrity of the ipsilesional corticomotor pathway and motor function.

20.
CNS Neurosci Ther ; 30(2): e14367, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37452499

RESUMO

AIMS: Itch is an unpleasant sensation that severely impacts the patient's quality of life. Recent studies revealed that the G protein-coupled estrogen receptor (GPER) may play a crucial role in the regulation of pain and itch perception. However, the contribution of the GPER in primary sensory neurons to the regulation of itch perception remains elusive. This study aimed to investigate whether and how the GPER participates in the regulation of itch perception in the trigeminal ganglion (TG). METHODS AND RESULTS: Immunofluorescence staining results showed that GPER-positive (GPER+ ) neurons of the TG were activated in both acute and chronic itch. Behavioral data indicated that the chemogenetic activation of GPER+ neurons of the TG of Gper-Cre mice abrogated scratching behaviors evoked by acute and chronic itch. Conversely, the chemogenetic inhibition of GPER+ neurons resulted in increased itch responses. Furthermore, the GPER expression and function were both upregulated in the TG of the dry skin-induced chronic itch mouse model. Pharmacological inhibition of GPER (or Gper deficiency) markedly increased acute and chronic itch-related scratching behaviors in mouse. Calcium imaging assays further revealed that Gper deficiency in TG neurons led to a marked increase in the calcium responses evoked by agonists of the transient receptor potential ankyrin A1 (TRPA1) and transient receptor potential vanilloid V1 (TRPV1). CONCLUSION: Our findings demonstrated that the GPER of TG neurons is involved in the regulation of acute and chronic itch perception, by modulating the function of TRPA1 and TRPV1. This study provides new insights into peripheral itch sensory signal processing mechanisms and offers new targets for future clinical antipruritic therapy.


Assuntos
Cálcio , Gânglio Trigeminal , Animais , Camundongos , Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Prurido/induzido quimicamente , Prurido/metabolismo , Qualidade de Vida , Receptores de Estrogênio/metabolismo , Gânglio Trigeminal/metabolismo , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...